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The NJL Model for Quarks in Hadrons and Nuclei
- Part II: Diquarks and Nucleons -

W. Bentz (Tokai Univ., Japan)

Lectures given at 23rd Annual Hampton University Graduate Studies
Jefferson Lab, June 2-20, 2008



What is a diquark?

❖ Diquarks

❖ BS equation

❖ Nucleon

❖ Nucleon mass

❖ Stat. approx.

❖ Form factor

❖ Quark distributions

❖ Comments

2 / 18

● Diquark is a correlated (interacting) quark-quark state. It has
color 3 (antisymmetric) or color 6 (symmetric). Inside the
nucleon, only color 3 is possible.

● The most important diquark is the “scalar diquark”:
JP = 0+, T = 0. (Nonrelativistic analogue: 1S0 state.) This is
a kind of “pairing” between u and d quarks, and can form a
condensate in high density quark matter (⇒ Part III). In lattice
QCD, a sharp peak in the spectral density of the correlation
function in this channel is seen (Fig.5):
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The next important diquark is the “axial vector diquark”: JP = 1+, T = 1. (Nonrelativistic analogue: 3S1

state.)
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To describe diquarks, it is convenient to rewrite the interaction

largangian (ψΓψ)2 →
(

ψΩψ
T
)

(

ψT Ωψ
)

. The matrix Ω then shows

the quantum numbers of the interacting qq channel.

(Time runs from left to right in this figure).

To do this rewriting, first use the identity

(

ψ3Γ
1ψ1

) (

ψ4Γ
2ψ2

)

= −
(

ψ3Γ
1ψ1

)

(

ψT
2 Γ2Tψ

T

4

)

=
(

ψ3Γ
1ψ1

)

(

ψ
′

2Γ
′2ψ′

4

)

(1)

where

ψ′ = Cτ2ψ
T

(C = iγ2γ0)

ψ
′

= −ψTC−1τ2 , Γ′ = Cτ2Γ
TC−1τ2

and then make the usual Fierz transformation for (1).
(See Notes!).
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For example, our interaction LI = −G
(

ψ λC

2 γ
µψ

)2
can be rewritten

as

LI = Gs

(

ψγ5Cτ2β
Aψ

T
)

(

ψTC−1γ5τ2β
Aψ

)

(2)

+ Ga

(

ψγµC(τiτ2)β
Aψ

T
)

(

ψTC−1γµ(τ2τi)β
Aψ

)

(3)

+ other channels

Gs =
1

9
G =

1

2
Gπ, Ga =

1

18
G =

1

4
Gπ, βA =

√

3

2
λA

C , (A = 2, 5, 7)

The term (2) is the interaction in the scalar diquark channel:
JP = 0+, T = 0, color 3. The term (3) corresponds to the axial
vector diquark channel: JP = 1+, T = 1, color 3.

τ2 couples the isospin of two quarks to T = 0, and C−1γ5 ∝ Σ2 couples the spins
to J = 0. Under spinor Lorentz transformations ψ′(x′) = S(Λ)ψ(x) we have the
identities ST

`

C−1γ5
´

S =
`

C−1γ5
´

, and ST
`

C−1γµ
´

S = Λµ
ν

`

C−1γν
´

, etc.
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We have the Feynman rule for the qq interaction in the scalar
diquark channel:

4iGs

(

γ5Cτ2β
A
)

γδ

(

C−1γ5τ2β
A
)

αβ
≡ Kγδ,αβ

Additional rule: For each qq intermediate state there is a symmetry factor 1/2.

Then the equation for the qq scattering matrix (Bethe- Salpeter
equation) becomes for fixed total 4-momentum pµ:

Tγδ,αβ(p) = Kγδ,αβ +
1

2

∫

d4k

(2π)4
Kγδ,λǫSǫ′ǫ(−k)Sλλ′(p+ k)Tλ′ǫ′,αβ(p)
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Inserting the form Kγδ,αβ = 4iGs Ωγδ Ωαβ , and assuming the
solution of the form

Tγδ,αβ(p) = t(p) Ωγδ Ωαβ

we get for the scalar function t(p) the simple equation:

t(p) = 4iGs − 2GsΠ(p2)t(p) ⇒ t(p) =
4iGs

1 + 2GsΠ(p2)

with the following “bubble graph”

Π(p2) ≡ i

∫

d4k

(2π)4
Tr

(

ΩS(p+ k)ΩST (−k)
)

Using the relation CS(−k)TC−1 = S(k), we see that this bubble
graph is the same as the previous one in the pion channel.
The pole of t(p) gives the diquark mass: 1 + 2GsΠ(p2 = M2

D) = 0.
If Gs = Gπ , the scalar diquark and the pion are degenerate.
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Expanding Π(p2) near the pole as
Π(p2) = Π(M2

D) + (p2 −M2
D)Π′(M2

D) + . . . , we see that near the
pole

t(p) →
ig2

D

p2 −M2
D

where g2
D ≡ (−2/Π′(M2

D)).

Again, this supports the interpretation of MD as the diquark mass
and gD as the quark-diquark coupling constant.

Remember the form of the vertex function for scalar diquark:
Ω = γ5Cτ2βA (A = 2, 5, 7).
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Now we describe the nucleon as a bound state of a quark and a
diquark. The 3-quark scattering matrix can represented as follows:

Cutting the external propagators as shown, we are left with the
quark-diquark scattering matrix, denoted as X. It satisfies

This “Faddeev equation” simply means the recombination of
interacting pairs: (12)3 → (23)1 → . . . . In the Figure, α, β refer to
the quark (Dirac and isospin indices), while for the diquark we take
only the scalar channel. Remember the form of our 2-body T-matrix:
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Define the “quark exchange kernel” as

Z(k′, k) ≡ ΩST (p− k′ − k)Ω
color 0
=⇒ (−3)γ5S(k + k′ − p)γ5

where the last form follows by coupling the quark color (3c) and the
diquark color (3c) to total color 0. Then we can write the Faddeev
equation in the color singlet channel as

X(k′, k) = Z(k′, k) +

∫

d4k′′

(2π)4
Z(k′, k′′)S(k′′)t(p− k′′)X(k′′, k)

where X, Z, S are Dirac matrices and t is a scalar function. This
equation can be solved numerically. If X has a pole in the total
momentum p2, we can define the nucleon mass MN and vertex
functions ΓN by the behaviour near the pole as follows:
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Results for the nucleon mass, including both the scalar and axial
vector diquark channels:

In this calculation, Gπ is fixed by the pion mass (see Notes!), and
rs = Gs/Gπ, ra = Ga/Gπ are treated as parameters.

Remember that the interaction −G
(

ψ λa

2 γµψ
)2

gave
rs = 0.5, ra = 0.25 ⇒ If only the scalar diquark is included:
MN = 1.1 GeV; if also axial vector diquark is included: MN = 0.9
GeV.
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Qualitatively correct analytic results can be obtained with the
following “static approximation”: Neglecting the momentum
dependence of the quark exchange kernel, Z → 3/M . Then

X(p) =
3

M
−

3

M
ΠN (p)X(p) ⇒ X(p) =

3

M

1

1 + 3
M ΠN (p)

where the Dirac matrix ΠN (p) is a quark-diquark bubble graph:

ΠN (p) ≡ −

∫

d4k

(2π)4
S(k)t(p− k)

The nucleon mass is determined by 1 + 3
M Π( 6p = MN ) = 0, and

the pole behaviour gives the vertex functions ΓN (p) defined earlier:

X(p) →
1

( 6p−MN )Π′
N ( 6p = MN )

=

∑

s uN (p, s)uN (p, s)

p2 −M2
N

×
2MN

Π′
N ( 6p = MN )
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The electromagnetic current of the nucleon is given by the
following Feynman diagrams:

This is usually expressed in terms of the Dirac-Pauli form factors
F1(Q

2), F2(Q
2) as

jµ(q) =

√

MN

Ep′

√

MN

Ep
uN (p′)

[

γµF1(Q
2) +

iσµνqν
2MN

F2(Q
2)

]

uN (p)

The electric and magnetic form factors are then defined by

GE(Q2)=F1(Q
2) −

Q2

4M2
N

F2(Q
2) , GM (Q2)=F1(Q

2) + F2(Q
2)

Q2 = −q2 > 0 for electron scattering. Interpretation of GE and GM as Fourier

transforms of charge and magnetic moment densities is possible in the “Breit frame”,

where ~p = −~q/2, ~p′ = ~q/2.
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Inserting our vertex functions from the “static approximation” into
the Feynman diagram, we obtain for the current of the nucleon

jµ(q) =

√

MN

Ep′

√

MN

Ep

(

1

Π′
N (MN )

)

uN (p′)

∫

d4k

(2π)4

× [S(p′ − k)γµQqS(p− k)t(k) + i (t(p′ − k)Λµ
Dt(p− k))S(k)]uN (p)

where Qq = 1
6 + τ3

2 is the quark charge, and Λµ
D is the diquark

electromagnetic vertex:

The most naive quark-diquark model means to approximate the
diquark t-matrix by the pole term: t(k) → ig2

D/(k
2 −M2

D), and to
make an on-shell approximation for the diquark electromagnetic
vertex: g2

DΛµ
D = (k + k′)µFD(q2), where FD(q2) is the diquark

charge form factor.
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● dashed line . . . point diquark (FD(q2) = 1)

● dashed-dotted line . . . formula on previous slide, including
finite size of diquark

● solid line . . . including intrinsic quark form factors from pion
cloud and vector mesons.

● “dipole”: Empirical form GEp = 1/(1 +Q2/0.71GeV2)2
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● dashed line . . . point diquark (FD(q2) = 1)

● dashed-dotted line . . . formula two slides before, including
finite size of diquark

● solid line . . . including intrinsic quark form factors from pion
cloud and vector mesons.

● “dipole”: Empirical form GEn = Q2

4M2
N

|κn|
(1+Q2/0.71GeV2)2

(κn = −1.91).
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To calculate the quark momentum distributions in the proton, we
calculate the following Feynman diagrams with operator insertion
O+

q = (1 ± τ3/2)γ+δ(x− k+/p+), where q = u, d:

Result for up-quark distribution in proton (Fig.9):
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Result for down-quark distribution in proton (Fig.10):

● solid line . . . NJL result

● dashed line . . . Result obtained by Q2 evolution up to Q2 = 10
GeV2, assigning a low energy scale Q2

0 = 0.16 GeV2 to the
solid line

● dotted line . . . empirical valence quark distribution at Q2 = 10
GeV2.
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● Fig. 5: See: I. Wetzorke, F. Karsch, hep-lat/0008008, Fig.2a. (303) means the scalar diquark
(flavor 3, spin0, color3), and (603) means the axial vector diquark (flavor 6, spin0, color3). A
delta-function like peak in the spectral density indicates a pole in the diquark propagator.

● Fig.6: See N. Ishii et al, Nucl. Phys. A 587 (1995), p. 617; Fig. 6. Here the Euclidean cut-off is used
(Λ = 0.739 GeV in the figure). The constituent quark mass is M = 0.4 GeV. The scalar diquark
mass decreases from 0.764 GeV (for rs = 0.4) to 0.14 GeV (for rs = 1), while the axial vector
diquark is unbound (no pole, only continuum states).

● Figs. 7, 8: See T. Horikawa, W. Bentz, Nucl. Phys. A 762 (2005) 102; Figs. 6 and 7. The proper-time
regularization is used here (ΛUV = 0.64 GeV, ΛIR = 0.2 GeV). The constituent quark mass is
M = 0.4 GeV. The calculation of the intrinsic quark form factors from pion cloud and vector mesons is
also discussed in the paper. For a general discussion of nucleon form factors, including the
experimental data and the problem of extracting the neutron form factor, see: A.W. Thomas and W.
Weise, The Structure of the Nucleon, Wiley-VCH, New York, 2001.

● Figs. 9, 10: See H. Mineo et al, Nucl. Phys. A 735 (2004), p. 482; Figs. 3 and 4.
The proper-time regularization is used here (ΛUV = 0.64 GeV, ΛIR = 0.2 GeV). The constituent
quark mass is M = 0.4 GeV. For the Q2 evolution, the code of M. Miyama, S. Kumano, Comput.
Phys. Commun. 94 (1996), p.185, is used. (Case of next-to-leading order with ΛQCD = 0.25 GeV is
used in the figure.) The empirical distributions are taken from: A.D. Martin, R.G. Roberts, W.J. Stirling
and R.S. Thone, Eur. Phys. J. C 28 (2003), p. 455. They are obtained from experimental data for deep
inelastic scattering of leptons off the proton, deuteron and 3He.
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